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ABSTRACT

This thesis is intended to present investigations on Biogeography Based Optimization (BBO)

algorithms and introduce a new variant to improve convergence performance. The proposed

variant is tested well on testbed of benchmark functions and then applied on a real world

problem of evolving optimal design of 6-element Yagi-Uda antenna for gain maximization.

Biogeography is the study of the geographic distribution of organisms throughout the land-

scape over time. It examines how do species migrate among islands (via flotsam, wind, flying

and swimming, etc.) due to geographical and environmental conditions. BBO is one of

most popular swarm based optimization algorithm that has shown impressive performance

over other Evolutionary Algorithms (EAs). BBO consists of two operators (i) Migration

Operator: It is a probabilistic operator that improves the solution fitness of poor habitats

by receiving features from good habitats. (ii) Mutation Operator: It is second probabilistic

operator that modifies the values of some of randomly selected solution features of a few

habitats that are intended for exploration of newer solutions within the search-space.

Immigration Refusal Biogeography Based Optimization (IRBBO), Enhanced Biogeography

Based Optimization (EBBO), Blended Migration are the most improved version of the BBO.

In this thesis, a new variant of BBO (migration operator) is proposed to get faster con-

vergence as compared to other EAs. This proposed migration variant is named as Graded

Emigration. Graded Emigration is investigated for comparative study along with other

BBO variants as Graded Emigration Biogeography Based Optimization (GE-BBO), Graded

Emigration Enhanced Biogeography Based Optimization (GE-EBBO), Graded Emigration

Immigration Refusal Biogeography Based Optimization (GE-IRBBO). The proposed variant

subjected to evolve solutions for a testbed of benchmark functions having multimodalities

and deceptive gradient benchmark performance (i.e., Dejong, Ackley, Griewank, Rastrigin

ix
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and Rosenbrock) along with other known EAs for comparison. There after applied to real

world problem of designing six-element Yagi-Uda antenna for maximum gain to observe

convergence performance.

A Yagi-Uda antenna is one of widely used antenna designs due to high gain capability, low

cost and ease of construction. It is simple to construct and has a high gain, typically greater

than 10dB at VHF and UHF frequency range. Yagi-Uda consists of three types of elements:

(a) Reflector: Biggest among all and is responsible for blocking radiations in one direction.

(b) Feeder: That is fed with the signal to be transmitted from transmission line. (c) Directors:

These are usually more than one in number and responsible for unidirectional radiations. The

physical parameters of Yagi-Uda antenna (element-lengths and spacings between adjacent

elements) bear highly complex and non-linear relationship with gain, impedance and Side

Lobe Level, etc. This antenna design problem, further, complicates as the number of antenna

elements are increased with the objective of achieving higher directional gain. To evaluate

Yagi-Uda antenna for gain, impedance, etc., a Method of Moments (MoMs) based antenna

modeling free software, called Numerical Electromagnetics Code (NEC), is used along with

algorithmic programming in C++.

In this thesis, Graded Emigration algorithms have been investigated to evolve solutions to

benchmark optimization functions and to optimize maximum gain for Yagi-Uda antenna

design for maximal gain. The comparative analysis of BBO, PSO and combinational BBO-

PSO is also presented for antenna design optimization problem for multiple evolutionary runs.

From experimental outcomes it has been observed that the GE-EBBO performs overall best

among the variants explored in this thesis. The maximum gain achieved using GE-EBBO

is 13.84 dB and by using Combined BBO-PSO gain achieved is 13.85 dB for six-element

Yagi-Uda antenna.

This thesis is outlined as follow: Chapter 1 is devoted to introduction to M.Tech. thesis

as a whole that includes introduction to Research Topic, Motivation, Methodologies, Con-

tributions, Research Findings and outline of Thesis. Chapter 2 starts with the literature

survey giving an overview of BBO & PSO algorithms and their most popular variants. It

also presents a gentle introduction to Yagi-Uda antenna and AI and non AI based approaches

followed to evolve optimal antenna designs. Chapter 3 is dedicated to study of biogeography,

BBO & PSO algorithmic flow and their most popular variants reported, till date. It also

presents the introduction to the proposed variant of Graded Emigration. Chapter 4 is devoted

to introduce testbed of benchmark optimization functions. It also discusses how Yagi-Uda
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antenna design problem can be formulated as optimization problem. In Chapter 5, Firstly,

NEC software is discussed that is used to evaluate wire antennas for gain, impedance, SLL,

etc. Secondly, implementation algorithmic flow of BBO, PSO and Combined PSO-BBO in

C++ environment, are discussed in detail. Chapter 6 represents average of multiple runs of

simulations for convergence performance for benchmark functions and then for optimization

of Yagi-Uda antenna. Best results and average for gain maximization in tabulated form are

also represented in this chapter. Lastly, conclusion and future scopes of this research are

discussed in Chapter 7.

Place: Ferozepur Shelja Tayal (1169062)

Date: July 9, 2013



ABBREVIATIONS

Abbreviations Description

ABC Artificial Bee Colony

ACO Ant Colony Optimization

AI Artificial Intelligence

BBO Biogeography Based Optimization

CDB Console Debugger

CLPSO Comprehensive Learning Particle Swarm Optimization

CPU Central Processing Unit

DE Differential Evolution

EA Evolutionary Algorithm

EC Evolutionary Computation

EBBO Enhanced Biogeography Based Optimization

GA Genetic Algorithm

GE-IRBBO Graded Emigration Immigration Refusal

GE-BBO Graded Emigration Biogeography Based Optimization

GE-EBBO Graded Emigration Enhanced Biogeography Based Optimization

GUI Graphical User Interface

HSI Habitat Suitability Index

IDE Integrated Development Environment

IRBBO Immigration Refusal

xii



xiii

Abbreviations Description

NEC Numerical Electromagnetics Code

PSO Particle Swarm Optimization

SA Simulated Annealing

SGA Stud Genetic Algorithm

SIV Suitability Index Variable

SI Swarm Intelligence

SLL Side Lobe Level

UHF Ultra High Frequency

UOD Universe of Discourse

VHF Very High Frequency



NOTATIONS

Symbols Description

µk Emigration Rate of k-th habitat

λk Immigration Rate of k-th habitat
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I Maximum Immigration Rate
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CHAPTER 1

INTRODUCTION

This thesis presents investigational studies to improve Biogeography Based Op-

timization algorithm and their variants. This introductory chapter presents an

overview of the thesis, as a whole and introduces to the research topic, motivation,

methodologies, objectives, contributions.

1.1 Introduction

Like other Evolutionary Algorithms (EAs), e.g., Particle Swarm Optimization (PSO) [Kennedy

and Eberhart, 1995], Genetic Algorithm (GA) [Michalewicz, 1998], Differential Evolution

(DE) [Storn and Price, 1997], Evolutionary Programming [Yao et al., 1999], Artificial Bee

Colony (ABC) [Karaboga and Basturk, 2007], Ant Colony Optimization (ACO) [Dorigo et al.,

2006], Biogeography Based Optimization (BBO) is population based stochastic algorithm.

Biogeography is the study of distribution of species over space and time. Robert MacArthur

and Edward Wilson first discovered and developed the mathematical models that govern

the distribution of species [MacArthur and Wilson, 1967]. This motivates the development

of BBO as an application of biogeography to EAs. BBO is a new swarm based optimiza-

tion technique introduced by Dan Simon in 2008. It is based on science of biogeography

where features sharing among various habitats, i.e., potential solution, is accomplished with

migration operator and exploration of new features is done with mutation operator.

In [Du et al., 2009], the immigration refusal in BBO is proposed in order to improve its

performance. As the modifications have made in BBO by many researches, Pattnaik et

al. have proposed Enhanced Biogeography Based Optimization (EBBO) in which duplicate

1
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habitats created due to migration is modified with random mutation to increase the ex-

ploitation ability of BBO [Pattnaik et al., 2010]. Ma and Simon introduced new migration

operator, i.e., Blended migration, to solve the constrained optimization problem and make

BBO convergence faster [Ma and Simon, 2010, 2011].

In this thesis, a new variant of BBO is proposed by doing migration variations in BBO & its

variants to make the convergence faster as compared to other EAs discussed. The proposed

variant is tested well on testbed of benchmark functions and applied on a real world problem

of evolving optimal design of six-element Yagi-Uda antenna.

In the area of benchmark functions a broad range of published test functions exists, designed

to stress different parts of a global optimization algorithm, i.e., Dejong/Sphere, Ackley,

Griewank, Rastrigin and Rosenbrock functions. These functions have the strength of an

analytical expression with a known global minimum. There are many unimodal and multi-

modal benchmark functions. which are commonly used to critically test the performance of

numeric optimization algorithms. These functions are chosen because of their particularities,

which render their optimization difficult.

A Yagi-Uda antenna was invented in 1926 by H. Yagi and S. Uda at Tohoku University in

Japan, however, published in English in 1928. Since its invention, continous efforts have

been put in optimizing the antenna for gain, impedance, SLL and bandwidth using different

optimization techniques based on traditional mathematical approaches and modern heuristic

of Artificial Intelligence (AI) techniques.

1.2 Motivation

BBO has shown its ability to solve optimization problems. However, in order to improve

this advantage relative to other heuristic algorithms, it is necessary to improve BBO. Several

variants of BBO algorithm are introduced to get better results than BBO by adding new

features in BBO algorithm like Immigration Refusal, EBBO, Blended Migration. This shows

that BBO is an algorithm that has much promise and merits for further development and

investigation. This motivates to propose new algorithms by doing migration variations in

BBO & its variants to get better results. The name of new algorithms by doing migration

variations in BBO, EBBO, IRBBO is Graded Emigration Biogeography Based Optimization

(GE-BBO), Graded Emigration Enhanced Biogeography Based Optimization (GE-EBBO),

Graded Emigration Immigration Refusal (GE-IRBBO) respectively. It’s detail is given in

the further chapters.
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1.3 Objectives

The primary objectives of this research work are summarized as follow:

1. To introduce a new variant of BBO by doing migration variations in BBO named as

Graded Emigration (GE-BBO) to get faster convergence performance as compared to

other EAs. Graded Emigration is also investigated with BBO variants as GE-EBBO

and GE-IRBBO.

2. To test the Graded Emigration on testbed of benchmark function.

3. To compare the results of various stochastic algorithms by applying it on the application

of six-element Yagi-Uda antenna.

4. To compare the results of BBO and PSO and Combined PSO-BBO by applying it on

the real world problem of evolving optimal design of six-element Yagi-Uda antenna.

1.4 Methodology

The Methodology followed is:

1. One of the foremost requirement to make these new algorithms is to deep study and

understand BBO & its variants.

2. Second difficult requirement is to design programs of all these algorithms and to imple-

ment it on some platform to get the output. These algorithms are tested with a well

known testbed of benchmark functions on Qt Creator platform.

3. Qt Creator platform is very helpful. Qt Creator is an Integrated Development En-

vironment (IDE) that provides tools to design and develop applications with the Qt

application framework. The real strength of Qt is the ability to integrate it into a C++

application.

1.5 Contributions

The main contributions of this report are:

1. Various BBO algorithms & its variants have been investigated for different swarm sizes.
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2. Several benchmark functions contribute to test the new proposed graded algorithms to

evolve optimal solution.

3. To optimize the wire lengths of Yagi-Uda antenna and spacings in between them, NEC2

(Numerical Electromagnetics Code version 2), is used to evaluate the antenna designs

for gain, input impedance, bandwidth and beamwidth, etc.

1.6 Thesis Outline

Chapter 2 starts with the literature survey giving an overview of BBO & PSO algorithms

and their most popular variants. It also presents a gentle introduction to Yagi-Uda antenna

and AI and non AI based approaches followed to evolve optimal antenna designs.

Chapter 3 is dedicated to study of biogeography, BBO & PSO algorithmic flow and their

most popular variants reported, till date. It also presents the introduction to the proposed

variant of Graded Emigration.

Chapter 4 is devoted to introduce testbed of benchmark optimization functions. It also

discusses how Yagi-Uda antenna design problem can be formulated as optimization problem.

In Chapter 5, Firstly, NEC software is discussed that is used to evaluate wire antennas for

gain, impedance, SLL, etc. Secondly, implementation algorithmic flow of BBO, PSO and

Combined PSO-BBO in C++ environment, are discussed in detail.

Chapter 6 represents average of multiple runs of simulations for convergence performance

for benchmark functions and then for optimization of Yagi-Uda antenna. Best results and

average for gain maximization in tabulated form are also represented in this chapter.

Lastly, conclusion and future scopes of this research are discussed in Chapter 7.



CHAPTER 2

LITERATURE SURVEY

This Chapter contains the overview of various EAs like BBO & its variants, PSO.

These alorithms are tested on benchmark functions and investigated on Yagi-Uda

antenna to get the optimal solution.

2.1 Introduction

Until the 1960s, the science of biogeography was mainly descriptive and historical [Darwin,

1859, 1964; Wallace, 1876]. In the early 1960s, Robert MacArthur and Edward Wilson began

working together on mathematical models of biogeography, their work culminated in a classic

publication of The Theory of Island Biogeography under arbitrary conditions [MacArthur

and Wilson, 1967]. Their interest was primarily focused on the distribution of species among

neighboring islands. They were interested in mathematical models for the extinction and

migration of species. The application of biogeography to engineering is similar to what has

occurred in the past few decades with GAs, ACO, PSO and other areas of computational

intelligence. After BBO, BBO variants like Immigration Refusal, EBBO, Blended Migration

are introduced. These stochastic algorithms are tested by benchmark functions.

Yagi-Uda antenna was invented by H. Yagi and S. Uda in 1926 at Tohoku University in

Japan, but first published in English in 1928 and it has been extensively used as an end-fire

antenna [Yagi, 1928]. There are no simple formulas for designing Yagi-Uda antennas due to

the complex relationships between physical parameters such as element length, spacing, and

diameter. So many researchers have proposed different algorithms for the optimized design

of Yagi-uda antenna. Yagi-Uda antenna is designed by stochastic algorithms.

5
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2.2 Biogeography Based Optimization

The study of the geographic distribution of organisms throughout the landscape is known

as Biogeography. It examines how the species migrate between islands via flotsam, wind,

flying, swimming, due to geographical variation in physical environment. BBO results

presented by researchers are better than other optimization techniques, like PSO, GAs, SA,

DE, etc. [Baskar et al., 2005; Jones and Joines, 1997; Rattan et al., 2008; Singh et al., 2012a,

2013a; Singh and Sachdeva, 2012a,b; Singh et al., 2013b,c,d,d,e, 2012b; Tayal et al., 2013;

Venkatarayalu and Ray, 2003].

The science of biogeography can be traced to the work of nineteenth century naturalists

such as Alfred Wallace and Charles Darwin. Until the 1960s, biogeography was mainly

descriptive and historical study. In the early 1960s, Robert MacArthur and Edward Wilson

began working together on mathematical models of biogeography, their work culminating

with the classic 1967 publication The Theory of Island Biogeography [MacArthur and Wilson,

1967]. Their interest was primarily focused on the distribution of species among neighboring

islands. They were interested in mathematical models for the extinction and migration of

species. Since MacArthur and Wilsons work, biogeography has become a major area of

research [Hanski and Simberloff, 1997]. The application of biogeography to engineering is

similar to what has occurred in the past few decades with GAs, neural networks, fuzzy logic,

PSO and other areas of computer intelligence.

BBO has certain features common with other swarm based algorithms. Like GAs and PSO,

BBO has a way of sharing information between solutions. GA solutions die at the end of

each generation, while PSO and BBO solutions survive forever (although their characteristics

change as the optimization process progresses). PSO solutions are more likely to clump

together in similar groups, while GA and BBO solutions do not necessarily have any built-in

tendency to cluster.

Dan Simon introduced yet another swarm based stochastic optimization technique based on

science of biogeography where features sharing among various habitats [Simon, 2008], i.e.,

potential solutions, is accomplished with migration operator and exploration of new features

is done with mutation operator. Singh et al. have presented BBO as a better optimization

technique for Yagi-Uda antenna designs, in [Singh et al., 2010].

2.2.1 Immigration Refusal

Du et al. have proposed the immigration refusal in BBO in order to improve its performance

[Du et al., 2009]. Features from Evolutionary Strategy (ES) are used for BBO modification.
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After the modification of BBO, F-tests and T-tests are used to demonstrate the differences

between different implementations of BBO.

2.2.2 Enhanced Biogeography Based Optimization

Pattnaik [Pattnaik et al., 2010] have proposed Enhanced Biogeography Based Optimization

(EBBO) in which duplicate habitats created due to migration, is modified with random

mutation to increase the exploitation ability of BBO. Experiments have been conducted on

unimodal and multimodal benchmark functions. EBBO gives excellent performance when

compared with BBO and other versions of BBO.

2.2.3 Blended Migration

Ma and Simon introduced new migration operator, i.e., Blended migration, to solve the

constrained optimization problem and make BBO convergence faster [Ma and Simon, 2010,

2011]. Firstly, Blended crossover operator of the GA outperformed standard BBO on a set of

benchmark problems. Secondly, Blended BBO algorithm is compared with solutions based

on a Stud Genetic Algorithm (SGA) and PSO.

2.3 Particle Swarm Optimization

PSO also belongs to the category of SI (Swarm Intelligence) [Eberhart et al., 2001] useful

in solving global optimization problems. It was originally proposed by James Kennedy, as a

simulation of social behavior and was introduced as an optimization method in 1995 [Kennedy

and Eberhart, 1995; Shi and Eberhart, 1999]. PSO is an EC (Evolutionary computation)

technique related to artificial life, specifically to swarming theories as it involves simulation

of social behaviors. PSO implementation is easy and computationally inexpensive, since its

memory and CPU speed requirements are low [Shi et al., 2001]. Moreover, it does not require

gradient information of the fitness function but only its values. PSO has been proved to be

an efficient method for many global optimization problems and in some cases it does not

suffer from the difficulties experienced by other EAs [Shi and Eberhart, 1999].

Particle swarm algorithm originated from flocking behaviour of birds for getting maximum

protection from predators [Heppner and Grenander, 1990]. A simulation program was de-

veloped to generate a bird flock for a hollywood film [Reynolds, 1987]. In this simulation,

a point on the screen was defined as food, called the cornfield vector, the idea was to allow

birds to find food through social learning by observing the behavior of nearby birds, who
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seemed nearer to the food source. The optimization potential was realized in the initial ex-

periments and the algorithm was modified to incorporate topological rather than Euclidean

neighborhoods and multi-dimensional search was attempted successfully.

PSO usually initializes the population by assigning each particle an arbitrary random start-

ing position in the solution space with a randomized velocity. GAs use selection, crossover

and mutation to replace less fit individuals by combining the traits of high performing chro-

mosomes/solutions. However, in PSO, members of the particle swarm persist over time,

retaining their identities and improving through imitation and interactions of best perform-

ing particles/solutions in the swarm.

2.4 Benchmark Functions

Global optimization has a lot of real-world applications, both of discrete and non-discrete na-

ture. Among them are chemical applications such as structure optimization of molecules and

clusters, engineering problems such as component design, logistics problems like scheduling

and routing and many others. Despite the typical practical finding that a general global opti-

mization algorithm usually is much less efficient than specific versions tuned to the problem at

hand, it is still of interest to gauge the baseline performance of a global optimization scheme

using benchmark problems. Most recent examples of such tests [Dieterich and Hartke, 2012;

Mariani et al., 2011; Pan et al., 2010; Zhao et al., 2010], it is customary to employ certain

standard benchmark functions, with the implicit (but untested) assumption that the diffi-

culty of these benchmark functions roughly matches that of real-world applications. Some

of these benchmark functions even are advertised as particularly challenging.

EA based global optimization strategies developed in the challenging, real-life area of atomic

and molecular cluster structure optimization. Whitley etal. argued that many of the standard

benchmark functions should be relatively easily solvable due to inherent characteristics like

symmetry and separability [Whitley et al., 1996]. Some functions even appeared to get easier

as the dimensionality of the function increases.

In the area of benchmark functions a broad range of published test functions exists, designed

to stress different parts of a global optimization algorithm. Among the most popular ones are

Dejong/Sphere, Ackley, Griewank, Rastrigin, Rosenbrock functions. These functions have

the strength of an analytical expression with a known global minimum.
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2.5 Yagi-Uda Antenna

A Yagi-Uda antenna was invented in 1926 by H. Yagi and S. Uda at Tohoku University

[Uda and Mushiake, 1954] in Japan, however, published in English [Yagi, 1928]. Since its

invention, continuous efforts have been put in optimizing the antenna for gain, impedance,

SLL and bandwidth using different optimization techniques based on manual, traditional

mathematical approaches [Bojsen et al., 1971; Chen and Cheng, 1975; Cheng and Chen, 1973;

Cheng, 1971, 1991; Reid, 1946; Shen, 1972] and Artificial Intelligence (AI) based techniques

[Baskar et al., 2005; Jones and Joines, 1997; Li, 2007; Singh et al., 2010, 2007; Venkatarayalu

and Ray, 2004; Wang et al., 2003].

Yagi aerials approximate design was proposed for maximum gain in [Fishenden and Wiblin,

1949]. Ehrenspeck and Poehler have given a manual approach to maximize the gain of the

antenna by varying various lengths and spacings of its elements [Ehrenspeck and Poehler,

1959].

Later on, with the availability of improved computational facilities at affordable prices made

it possible to optimize antennas numerically. A numerical optimization technique was pro-

posed to calculate the maximum gain of Yagi-Uda antenna arrays with equal and unequal

spacings between adjoining elements. Optimum design of Yagi-Uda antenna where antenna

gain function is proved to bear a highly non-linear relationship with its geometric parameters.

In 1975, John Holland introduced Genetic Algorithms (GAs) as a stochastic, swarm based

AI technique, inspired from natural evolution of species, to optimize arbitrary systems for

certain cost function. Then many researchers investigated GAs to evolve solutions to engi-

neering problems including Yagi-Uda antenna for gain, impedance and bandwidth, separately

[Altshuler and Linden, 1997; Correia et al., 1999; Jones and Joines, 1997] and collectively

[Kuwahara, 2005; Venkatarayalu and Ray, 2003; Wang et al., 2003]. Baskar et al., have

optimized Yagi-Uda antenna using Comprehensive Learning Particle Swarm Optimization

(CLPSO) and presented better results than other optimization techniques [Baskar et al.,

2005]. Li has used Differential Evolution (DE) to optimize geometrical parameters of a Yagi-

Uda antenna and illustrated the capabilities of the proposed method with several Yagi-Uda

antenna designs in [Li, 2007]. Singh et al. have explored another useful stochastic global

search and optimization technique named as Simulated Annealing (SA) for the optimal design

of Yagi-Uda antenna [Singh et al., 2007].

In 2008, Dan Simon introduced yet another swarm based stochastic optimization technique

based on science of biogeography where features sharing among various habitats (poten-

tial solutions) is accomplished with migration operator and exploration of new features is

done with mutation operator [Simon, 2008]. Singh et al. have presented BBO as a better

optimization technique for Yagi-Uda antenna designs [Singh et al., 2010].
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2.6 Conclusion

After the evolution in BBO, BBO variants has introduced, i.e., immigration refusal, EBBO

and Blended migration and show better convergence results. In this thesis, new algorithms

are proposed by doing migration variations in BBO & its variants. All these EAs are tested

on various benchmark functions and applied on a real world problem of Yagi-Uda antenna

and represented in the further Chapters.

Yagi-Uda antenna has many number of input parameters and have complex relationship

between them. After the evolution of Yagi-Uda antenna designing with artificial intelligence

and various optimization techniques (GA, PSO, DE, SA and BBO & its variants) to optimize

gain, input impedance, SLL, etc. Proposed graded algorithm is also applied for optimum

design of 6-element Yagi-Uda antenna for maximum gain.



CHAPTER 3

BBO AND PSO ALGORITHMS

In this chapter, various stochastic algorithms like BBO & its variants and PSO

are discussed. BBO has two major operators, viz. migration and mutation. Pro-

posed variant of BBO, viz. Graded Emigration improved performance of BBO

& it’s variants is discussed in this chapter. This chapter is dedicated to all the

variants of BBO and their psuedocodes. It also includes the description of nature

inspired PSO algorithm.

3.1 Introduction

Most of AI based EAs are stochastic in nature that uses multiple solutions at a time to evolve

better solutions iteratively by imitating one or another natural phenomenon. BBO and PSO

are similar EAs those have been developed by imitation of biogeography study and flocking

behaviour of birds and fish, etc. BBO is based on science of biogeography and consists of

two operators, i.e., migration and mutation operator. Simple migration may leads to same

type of habitats. To increase the diversity in the population is the objective of improved

performance in BBO. Different BBO variants like Immigration Refusal, EBBO and Blended

Migration algorithms are introduced. PSO is based on the social behaviour of birds like the

way they move, synchronize without colliding and try to move towards the center of the

flock. BBO and PSO solution features survive forever and retain their features from one

generation to the next.

11
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3.2 Biogeography

As name suggests, BBO is a population based global optimization technique developed on

the basis of the science of biogeography, i.e., study of the distribution of animals and plants

among different habitats over time and space.

Originally, biogeography was studied by Alfred Wallace and Charles Darwin mainly as de-

scriptive study [Darwin, 1859, 1964; Wallace, 1876]. However, in 1967, the work carried out

by MacAurthur and Wilson changed this view point and proposed a mathematical model for

biogeography and made it feasible to predict the number of species in a habitat [MacArthur

and Wilson, 1967]. Mathematical models of biogeography describe migration, speciation, and

extinction of species in various islands. Habitats that are well suited residences for biological

species are referred to have high Habitat Suitability Index (HSI) value.

3.2.1 BBO Terminology

Some of the important terms used in BBO algorithm are:

1. Island The term island is used for any habitat that is geographically isolated from

other habitats.

2. Habitats Habitats that are well suited residences for biological species.

3. Habitat Suitability Index HSI is analogues to fitness in other EAs whose value

depends upon many factors such as rainfall, diversity of vegetation, diversity of topo-

graphic features, land area and temperature etc.

4. SIV The factors/variables that characterize habitability are termed as Suitability Index

Variables (SIVs).

5. Immigration Immigration is the arrival of new species into a habitat or population.

6. Emigration Emigration is the act of leaving ones native region.

7. Migration Migration is a probabilistic operator that improves HSI of poor habitats by

sharing features from good habitats. It depends on the immigration and the emigration

rate.

8. Mutation Mutation is an another probabilistic operator that modifies the values of

some randomly selected SIVs of some habitats that are intended for for better solutions

by increasing the biological diversity in the population.
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The habitats with HSI tend to have a large population of its resident species, that is responsi-

ble for more probability of emigration (emigration rate, µ) and less probability of immigration

(immigration rate, λ) due to natural random behavior of species. Immigration is the arrival

of new species into a habitat or population, while emigration is the act of leaving one’s native

region. On the other hand, habitats with low HSI tend to have low emigration rate, µ, due to

sparse population, however, they will have high immigration rate, λ. Suitability of habitats

with low HSI is likely to increase with influx of species from other habitats having high HSI.

However, if HSI does not increase and remains low, species in that habitat go extinct that

leads to additional immigration.

For sake of simplicity, linear relationship between HSI (or population) and immigration (and

emigration) rates are assumed, and maximum values of emigration and immigration rates

are made equal, i.e., E = I, as depicted graphically in Fig. 3.1

 E = I 
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Figure 3.1: Migration Curves

For k-th habitat values of emigration rate, µk, and immigration rate, λk are given by (3.1)

and (3.2), respectively.

µk = E · HSIk
HSImax −HSImin

(3.1)

λk = I·
(

1− HSIk
HSImax −HSImin

)
(3.2)

The immigration of species from high HSI to low HSI habitats may raise the HSI of poor

habitats. Good solutions have more resistance to change than poor solutions whereas poor

solutions are more dynamic and accept a lot of features from good solutions.

Each habitat in a population of size NP , is represented by M -dimensional vector as H =

[SIV1, SIV2, . . . , SIVM ] where M is the number of SIVs (features) to be evolved for maximal

HSI. HSI is the degree of acceptability that is determined by evaluating the cost/objec-

tive function, i.e., HSI = f(H). Algorithmic flow of BBO involves two mechanisms, i.e.,

migration and mutation, and are discussed in the following sections.
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3.3 Migration variants

Migration variants are Standard Migration, Blended Migration, Immigration Refusal and

Modified Clear Duplicate Operator (EBBO)

3.3.1 Standard BBO Algorithm

Migration is a probabilistic operator that improves HSI of poor habitats by sharing features

from good habitats. During migration, i-th habitat, Hi (where i = 1, 2, . . . , NP ) use its

immigration rate, λi given by (3.2), to decide probabilistically whether to immigrate or not.

In case immigration is selected, then the emigrating habitat, Hj , is found probabilistically

based on emigration rate, µj given by (3.1). The process of migration takes place by copying

values of SIVs from Hj to Hi at random chosen sites, i.e., Hi(SIV )← Hj(SIV ). The pseudo

code of migration operator is depicted in Algorithm 1.

Algorithm 1 Standard Pseudo Code for Migration

for  i = 1 to NP do 

      Select Hi with probability based on λi 

      if Hi is selected then  

          for  j = 1 to NP do 

               Select Hj with probability based on µj 

               if Hj is selected 

                   Randomly select a SIV(s) from Hj 

                   Copy them SIV(s) in Hi  

                end if 

           end for 

      end if 

end for 

3.3.2 Immigration Refusal BBO Algorithm

In standard BBO, migration locations are decided on the basis of the emigration and immi-

gration rates. If the habitat has a high emigration rate, then the probability of emigrating

to other islands is high, whereas, the probability of immigration from other habitats is low.

However, the low probability does not mean that immigration from low fit solution will never

happen. Once in a while a high fit solution can tend to receive solution features from a low

fitness solutions that may ruin the high HSI of the better habitat. So, when the SIVs from

habitat which has low fitness try to emigrate to other habitats, the receiving habitats should

carefully consider whether to accept these SIVs or not. If the emigration rate of the habitat

is less than some threshold, and its fitness is also less than that of the immigrating habitat,

then the immigrating island will refuse this migration. This idea of conditional migration is



CHAPTER 3. BBO AND PSO ALGORITHMS 15

known as immigration refusal [Du et al., 2009]. Immigration Refusal BBO variant is inves-

tigated, in this paper, for evolutionary performance here whose pseudo code is depicted in

Algorithm 2.

Algorithm 2 Pseudo Code for Immigration Refusal

      for i = 1 to NP do 

           Select Hi with probability based on λi 

           if Hi is selected then  

              for j = 1 to NP do 

                   Select Hj with probability based on µj 

                  if  Hj is selected  

        if ((fitness(Hj)>fitness(Hi))  

          apply migration 

       end if 

     end if 

  end for 

           end if 

      end for 

3.3.3 Enhanced BBO Algorithm

The exploitation ability of BBO is good as migration operator can efficiently share the SIVs

between habitats. However, this creates similar habitats which decreases the diversity of

the population. To increase diversity in the population so as to increase the exploration

ability, clear duplicate operator is used. This variant is named as Enhanced BBO (EBBO)

presented in [Pattnaik et al., 2010], the same concept of standard migration and mutation is

used. however, modified clear duplicate operator is incorporated to get better results and to

make convergence faster. EBBO is investigated, in this paper, for convergence performance

whose pseudo code is depicted in Algorithm 3.

Algorithm 3 Pseudo Code for Enhanced Biogeography Based Optimization

      for i = 1 to NP do 

           Select Hi with probability based on λi 

           if Hi is selected then  

              for j = 1 to NP do 

                   Select Hj with probability based on µj 

                  if  Hj is selected  

        if ((fitness(Hj) == fitness(Hi)) 

                     eliminate duplicates 

       end if 

     end if 

  end for 

           end if 

      end for 
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3.3.4 Blended BBO Algorithm

A new migration operator called blended migration [Ma and Simon, 2011], which is the

modification of the standard BBO migration operator, and which is motivated from blended

crossover operator of GAs. In blended crossover operator, new genes values are generated

by combination of both parental gene values, instead of simple exchange of gene values. In

blended migration, SIV of habitat Hi is not simply replaced by SIV of habitat Hj . However,

a new SIV value in Blended Migration comprised of SIVs of both participating habitats, as

given by equation (3.3). Blended Migration is also investigated here whose pseudo code is

depicted in Algorithm 4.

Hi(SIV )← α ·Hi(SIV ) + (1− α) ·Hj(SIV ) (3.3)

Algorithm 4 Pseudo Code for Blended Migration

      for i = 1 to NP do 

           Select Hi with probability based on λi 

           if Hi is selected then  

              for j = 1 to NP do 

                   Select Hj with probability based on µj 

                  if  Hj is selected  

             Hi (SIV) ← α.Hi + (1-α).Hj 

     end if 

  end for 

          end if 

     end for 

Here α is a real number between 0 and 1. It could be random or deterministic. In Blended

BBO, exploration of search space for better solution is in built, therefore, may require less

mutation rates.

3.4 Proposed Algorithms

In this thesis, a new concept of graded emigration is proposed for furthur improved conver-

gence performance. This graded emigration is also investigated on other BBO variants and

described in the following subsections:

3.4.1 Graded Emigration BBO (GE-BBO)

In standard migration and its other variants do decide emigrating and immigrating habi-

tats and their SIVs probabilistically. Graded Emigration (GE) is a new migration variant

introduced in this paper, where number of SIVs of each emigrating habitat and their SIV
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number are predecided where to migrate in accordance to with their fitness ranking. In

GE the poorest habitat is completely replaced and the best habitat is preserved as it is,

whereas the mediocre habitats are partially modified by sharing fixed number of SIVs from

better habitats. The number of migrating SIVs are fixed, however their location is decided

randomly. This proposed algorithm is named as Graded Emigration BBO.

Example 3.1 (Graded Emigration among 10 habitats having 10 SIVs in each habitat). For

Graded Emigration in a population of 10 habitats having 10 SIVs in each habitat following

steps are required to be followed:

1. Sort habitats in ascending order to their fitness values.

2. The last poor habitat constitute a new habitat in the ratio of 4:3:2:1 to replace the

poorest in the population.

3. Next to the poorest is contributed by 90% by first, second, third and fourth best habitats

in the 4:3:2:0.

4. Subsequently, the other poorer habitats partially modified by the better habitats as per

the matrix given in the Algorithm 5.

For 20 or 30 habitats the algorithm may be extended by doubling or triplicating the rows of

the matrix X.

3.4.2 Graded Emigration EBBO (GE-EBBO)

In GE-BBO, there is a large probability of similar habitats. But in case of GE-EBBO, in

place of standard migration, the migration process of GE-BBO is applied and then the same

process of modified clear duplicate operator is integrated to reduce the similarity of habitats

and thereafter named as GE-EBBO. In Short, GE-EBBO is the combination of GE-BBO

with modified clear duplicate operator (EBBO) to get better results and to increase the

exploration ability.

3.4.3 Graded Emigration IRBBO (GE-IRBBO)

In case of GE-IRBBO, in place of standard migration, the migration process of GE-BBO

is applied and then the same process of immigration refusal is integrated in GE-BBO to

make the convergence faster. In Short, GE-IRBBO is the combination of migration process

of GE-BBO with Immigration Refusal to get better results and to increase the exploration

ability.
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Algorithm 5 Standard Pseudo Code for Graded Emigration
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for i to NP do 

for j=1 to X[i][1] do 

Randomly Select SIV(s) from NP-th Habitat and 

copy to random SIV(s) in i-th Habitat 

end for 

for j=5 to X[i][1]+ X[i][2] do 

Randomly Select SIV(s) from (NP-1)-th Habitat and 

copy to random SIV(s) in i-th Habitat 

end for 

for j=8 to X[i][1]+ X[i][2]+ X[i][3] do 

Randomly Select SIV(s) from (NP-2)-th Habitat and 

copy to random SIV(s) in i-th Habitat 

end for 

for j=10 to X[i][1]+ X[i][2]+ X[i][3]+ X[i][4] do 

Randomly Select SIV(s) from (NP-3)-th Habitat and 

copy to random SIV(s) in i-th Habitat 

end for 

end for 

Poor Habitat 

Best Habitat 

3.5 Mutation

Mutation is another probabilistic operator that modifies the values of some randomly selected

SIVs of some habitats that are intended for exploration of search space for better solutions

by increasing the biological diversity in the population. Here, higher mutation rates are

investigated on habitats those are probabilistically participating less in migration process.

The mutation rate, mRate, for k-th habitat is given as (3.4)

mRatek = C ×min(µk, λk) (3.4)
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where µk and λk are emigration and immigration rates, respectively, given by (3.1) and (3.2)

corresponding to HSIk. Here C is a constant and kept equal to 1, in this thesis, i.e., mutation

rate is much higher as compared to other EAs to maintain high diversity in the population.

The pseudo code of mutation operator is depicted in Algorithm 6.

Algorithm 6 Standard Pseudo Code for Mutation

( )kkCmRate λµ ,min×=   
for i = 1 to NP do 

for j = 1 to length(H) do 
Select Hj(SIV) with 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
 If Hj(SIV) is selected then 

Replace Hj(SIV) with  randomly generated SIV 
end if 

end for 
end for 

3.6 Particle Swarm Optimization

The PSO algorithm is one of stochastic swarm intelligence based global search algorithms.

The motivation behind the PSO algorithm is the social behavior of animals, viz. flocking of

birds and fish schooling. The PSO has its origin in simulation for visualizing the synchronized

choreography of a bird flock by incorporating certain features like nearest-neighbor velocity

matching and acceleration by distance [Eberhart et al., 2001; Kennedy and Eberhart, 1995;

Parsopoulos and Vrahatis, 2002; Shi et al., 2001]. Later on, it was realized that the simulation

could be used as an optimizer and resulted in the first simple version of PSO.

1. Flocks There is something about the way they move, synchronize, fly-without collid-

ing, and resulting in amazing choreography. In 1987, a very influential simulation of

bird-flock was published by Craig Reynolds [Reynolds, 1987]. Reynolds assumed that

flocking birds were driven by three concerns:

(a) Avoid colliding with their neighbors.

(b) Match with velocities of their neighbors.

(c) Try to move towards the center of the flock.

These simple rules resulted in a very realistic flocking behavior that showed coherent

clusters of boids (name of simulated birds) whirling through space, splitting to flock

around obstacles and rejoining again. His simple non-centralized algorithm was used

in many animated cinematic sequences of flocks and herds.
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2. Schools and Social Behaviour In their book [Eberhart et al., 2001], perfectly de-

scribed the rationale behind the idea that originated PSO was perfectly described as

“Whenever people interact, they become more similar, as they influence and imitate

one another. Norms and cultures are the result. Human physical behavior is not

flock-like or school-like; the trajectories of human thoughts through high-dimensional

cognitive space just might be.” The particle swarm algorithm is really a simulation of

the way minds think and of human social behavior.

Regarding concordance they state, “The social phenomenon behind thinking is more

complex than the choreographed behaviors of fish and birds. First, thinking takes place

in belief space, whose dimensionality is far greater than three. Second, when two minds

converge on the same point in cognitive space, we call it agreement, not collision.” Each

time it agrees, when travels to the same position in belief space (at least in some of

the coordinates). When it disagrees, the distance in belief space increases. Imitative

behavior is characterized by a velocity vector whose direction aims at another person’s

place in belief space.

3.6.1 Global-Best PSO Model

In PSO, the particles have adaptable velocities that determines their movement in the search

space and memory which enable them for remembering the best position in the search space

ever visited.
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Figure 3.2: Movement of i-th particle in 2-dimensional search space

The position corresponding to the best fitness is known as past best, pbest and the overall

best out of all NP the particles in the population is called global best, gbest. Consider

that the search space is M -dimensional and i-th particle in the swarm can be represented by

Xi = [xi1, xi2, ....xid..., xiM ] and its velocity can be represented by another M -dimensional

vector Vi = [vi1, vi2, ....vid.., viM ]. Let the best previously visited position of i-th particle be

denoted by Pi = [pi1, pi2, ....pid.., piM ], whereas, g-th particle, i.e., Pg = [pg1, pg2, ....pgd.., pgM ]

is globally best particle. Fig. 3.2 depicts the vector movement of particle element from

location xnid to xn+1
id in (n+ 1)-th iteration that is being governed by past best location, pnid,
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global best location, pngd, locations and current velocity vnid. Alternatively, the whole swarm

is updated according to the equations (3.5) and (3.6) suggested by Shi & Eberhart [Shi and

Eberhart, 1999].

vm+1
id = χ(wvmid + ψ1r1(p

m
id − xmid) + ψ2r2(p

m
gd − xmid)) (3.5)

xm+1
id = xmid + vm+1

id (3.6)

Here, w is inertia weight, ψ1 is cognitive parameter, ψ2 is social parameter and constriction

factor χ are strategy parameters of PSO algorithm, while r1, r2 are random numbers uni-

formly distributed in the range [0,1]. Generally the inertia weight, w, is not kept fixed and

is varied as the algorithm progresses. The particle movements is restricted with maximum

velocity, ±Vmax, to avoid jump over the optimal location as per search space requirements.

3.6.2 PSO Characterization

There are several parameters that need to be defined in order to successfully utilize PSO to

solve a given problem [Mendes, 2004]

1. Solution Encoding: It is a M -dimensional vector representation of collection problem

feature to be evolved for desired fitness function. This usually involves a minimum and

a maximum value allowed in each dimension, thus defining a hyperspace.

2. Fitness Function: This function is degree of suitability/accepatibility also problem

dependent and represents a measurement of a given solution. The function should

somehow create a total ranking in the solution space.

3. Population Size: This parameter infuences the behavior of the algorithm. A very

small population does not create enough interaction for the emergent behavior pertain-

ing to PSO to occur. However, large population size may lead to more computational

burden and consequently, take more evolutionary time. So the population size is to be

decided as per the problem size and complexity.

4. Acceleration Coefficients: The acceleration coefficients ψ1 and ψ2 are usually set to

the same value. In fact, people usually talk about ψ which sets the other two values ψ1

= ψ2 = ψ/2. If ψ is too small, the maximum step size becomes quite small and so the

algorithm will explore very slowly and degrade its performance. There is a consensus

among the researchers that step size is generally optimal if ψ = 4.1, however, not for

every problem and every time.
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5. Constriction or Inertia coefficient: It is not necessary to guess its value as given

by equation (3.7). If the value of ψ is set to 4.1, then χ ≈ 0.729.

χ =
2k

(2− ψ −
√
ψ2 − 4ψ

(3.7)

where k = [0, 1], ψ = ψ1 + ψ2 , ψ > 4

6. Maximum Velocity: With the advent of the constriction coefficient, most researchers

do not bother using this parameter. However, to avoid jump overs maximum velocity

is fixed to some value less than unity.

7. Neighborhood Topology: If every particle is made to interact with every other in

the swarm, then it becomes prove to fall into local optima. However, this may be

avoided if swarm is divided into subgroups and every particle is made to interact with

all members of its subgroup.

3.7 Conclusion

In this Chapter various nature inspired algorithms like BBO & its variants and PSO are

discussed. It also contains the introduction of graded algorithms and these algorithms are

experimented on benchmark functions and Yagi-Uda antenna design in further chapters.



CHAPTER 4

BENCHMARK TESTBED FOR

OPTIMIZATION ALGORITHMS

This Chapter is dedicated to the evaluation platforms like benchmark functions

(Dejong, Ackley, Griewank, Rastrigin, Rosenbrock) and Yagi-Uda Antenna on

which various optimization algorithms are applied. Benchmark Functions and

Yagi-Uda Antenna are used with an objective to determine and compare the per-

formance of BBO & it’s variants and proposed algorithms i.e., (GE-BBO, GE-

EBBO, GE-IRBBO).

4.1 Introduction

There are many benchmark functions which are commonly used to critically test the per-

formance of numeric optimization algorithms. These functions are chosen because of their

particularities, which render their optimization difficult. These comprise

1. Multi-modality

2. Deceptive gradient information

3. The curse of dimensionality

There are many benchmark test functions like a few of them listed in Table 4.1 and used in

this thesis to validate and compare the concept of GE with other variants. The application

of Yagi-Uda antenna is also discussed in this chapter.

23
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4.2 DeJong

Dejong/Sphere function is very simple and any algorithm capable of numeric optimization

should solve it without any problem. It is unimodal function, with global minima located at

x = (0, . . . , 0), with f(x) = 0.

 Figure 4.1: Dejong function Graph in two dimensions

4.3 Ackley

Ackley is a multimodal function with many local optima, however global minimum is f(x) =

0, is located at x = (0, . . . , 0). This function is difficult because optimization algorithms can

easily be trapped in a local minima on it’s way to the global minimization.

4.4 Griewank

Griewank function is strongly multimodal function with significant interaction among its

variables, caused by the product term. This function has the interesting property that

the number of local minima increases with dimensionality. The global minimum, x =

(100, 100, . . . , 100), yields a function value f(x) = 0.
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Figure 4.2: Ackley function Graph in two dimensions

 

Figure 4.3: Griewank function Graph in two dimensions

4.5 Rastrigin

Rastrigin is a multimodal version of the spherical function, characterized by deep local min-

ima arranged as sinusoidal bumps. The global minimum f(x) = 0, is located at x = (0, . . . , 0).
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Figure 4.4: Rastrigin function Graph in two dimensions

4.6 Rosenbrock

Rosenbrock function variables are strongly dependent and gradient information often mis-

leads algorithms. It’s global minimum of f(x) = 0 is located at x = (1, . . . , 1).

 

Figure 4.5: Rosenbrock function graph in two dimensions

4.7 Yagi-Uda Antenna

Antenna is an electrical device which forms an interface between free space radiations and

transmitter or receiver. The choice of an antenna depends on various factors such as gain,
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Table 4.1: Benchmark Functions

impedance, bandwidth, frequency of operation, SLL, etc. A Yagi-Uda antenna is a widely

used antenna design due to high forward gain capability, low cost and ease of construction.

It is a parasitic linear array of parallel dipoles, one of which is energized directly by transmis-

sion line while the others act as a parasitic radiators whose currents are induced by mutual

coupling. The characteristics of Yagi-Uda antenna are affected by all of the geometric pa-

rameters of array. It is simple to construct and has a high gain, typically greater than 10dB

at VHF and UHF frequency range, i.e., 3 MHz to 3 GHz.

Yagi-Uda antenna is shown in the Fig. 4.6. Yagi-Uda antenna consists of three types of wire

elements:

1. Feeder or Driven Element: Driven Element or Feeder is fed with the signal from

transmission line to be transmitted. There is usually just one driven element. A dipole

driven element will be resonant when its electrical length is half of the wavelength of

the frequency applied to its feed point.

2. Reflector: Reflector is biggest among all and is responsible for blocking radiations

in one direction. The reflector element is 5 percent is longer than the feed element.

There is typically only one reflector; adding more reflectors improves performance very

slightly. This element is important in determining the front-to-back ratio of the an-

tenna.

3. Directors: Directors are usually more than one in number and responsible of unidi-

rectional radiations. The lengths of directors reduces in the direction of radiations and

depends upon the director spacing, the number of directors used in the antenna, the

desired pattern, pattern bandwidth and element diameter.

Fig. 4.7 depicts a typical six-wire Yagi-Uda antenna all wires placed parallel to x-axis and

along y-axis. Middle segment of the reflector element is placed at origin, x = y = z = 0,
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and excitation is applied to the middle segment of the feeder element. An incoming field sets

up resonant currents on all the antenna elements which re-radiate signals. These re-radiated

fields are then picked up by the feeder element, that leads to total current induced in the

feeder equivalent to combination of the direct field input and the re-radiated contributions

from the director and reflector elements.

The radiation or antenna pattern describes the relative strength of radiated field in various

directions from the antenna at a constant distance. The radiation pattern is also called

reception pattern as well, since it also describes the receiving properties of the antenna. The

radiation pattern is three-dimensional, however, usually the measured radiation patterns

are a two dimensional slice of the three-dimensional pattern in the horizontal and vertical

planes. These pattern measurements are presented in either a rectangular or a polar format.

A polar format of the gain versus orientation (radiation pattern) is useful when characterizing

antennas. Some other important features of antenna that appears on plot are:

1. Forward Gain: Forward gain is the ability of an antenna to focus energy in a particular

direction while transmitting/receiving energy better to/from a particular direction. To

determine the gain or directivity of an antenna, a reference antenna is used to compare

antenna performance. Forward gain is expressed in decibel (dB) relative to an isotropic

source or a standard dipole in direction of maximum gain. Typically, higher the gain,

more the efficient antenna performance and longer the range of the antenna will operate.

Radiation pattern of a typical six-elements Yagi-Uda antenna is depicted in Fig. 4.7.

2. Front to Back ratio: The Front to Back ratio is used in describing directional radia-

tion patterns for antennas. If an antenna radiates maximum in one direction, the F/B

ratio is the ratio of the gain in the maximum direction to that in the opposite direction

(180 degrees from the specified maximum direction) ans is also expressed in dB.

3. Beamwidth: Beamwidth is the angle between directions where the power is half the

value at the direction of maximum gain which is -3dB. It gives the measure of directivity

of antenna

4. Sidelobes: Antenna is not able to radiate all the energy in one preferred direction

because some part of energy is inevitably radiated in other directions. Sidelobes are

unwanted peaks in the gain at angles other than in forward direction, they reduce the

amount of useful energy contained in the forward direction. The peaks are referred to

as side lobes, as shown in Fig. 4.7, and commonly specified in dB down from the main

lobe.

Other characteristics that do not appear on the polar plot but which are equally important

are:
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1. Bandwidth: Bandwidth is the range of frequency over which the antenna exhibits

acceptable characteristics.

2. Radiative impedance: For an efficient transfer of energy, the radiative impedance of

the antenna and transmission cable connecting them must be the same. Transceivers

and their transmission lines are typically designed for 50Ω resistive impedance. If

the antenna has an impedance different from 50Ω then there is a mismatch and an

impedance matching circuit is required to avoid signal loss.
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Figure 4.6: Yagi-Uda Antenna
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Figure 4.7: Radiation Pattern of a typical 6-wire Yagi-Uda Antenna

Designing a Yagi-Uda antenna involves determination of wire-lengths and wire-spacings in

between to get maximum gain, desired impedance and minimum SLL at an arbitrary fre-

quency of operation. An antenna with N elements requires 2N − 1 parameters, i.e., N wire

lengths and N−1 spacings, that are to be determined. These 2N−1 parameters, collectively,

are represented as a string referred as a habitat in BBO given as (4.1).

H = [L1, L2, . . . , LN , S1, S2, . . . , SN−1] (4.1)

where Ls are the lengths and Ss are the spacing of antenna elements. An incoming field sets

up resonant currents on all the antenna elements which re-radiate signals. These re-radiated

signals are then picked up by the feeder element, that leads to total current induced in the
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feeder equivalent to combination of the direct field input and the re-radiated contributions

from the director and reflector elements.

4.8 Conclusion

In this Chapter, various evaluation platforms, i.e., benchmark functions and Yagi-Uda an-

tenna are discussed. In this thesis, designing graded algorithm and proving it on benchmark

functions, moreover, gain maximization of six-element Yagi-Uda antenna will be the target

in the coming chapters. Algorithmic flow of BBO and PSO algorithms are discussed in the

next chapter.



CHAPTER 5

IMPLEMENTATION

In this chapter, Firstly, NEC software developed for antenna design parameters

evaluation, i.e., gain, input impedance, SLL, etc. Secondly, implementation al-

gorithmic flow of BBO, PSO, Combined PSO-BBO in C++ environment, are

discussed in detail.

5.1 Introduction

Swarm based algorithms like BBO & it’s variants, PSO are nature inspired optimization

techniques. In this Chapter, Combined PSO-BBO Algorithm is also introduced. All these

Algorithms are experimented on various benchmark functions (Dejong, Ackley, Griewank,

Rastrigin, Rosenbrock) and 6-element Yagi-Uda antenna to evolve near optimal solution for

faster convergence. Designing a Yagi-Uda antenna is a complex optimization problem. The

goal of the design process is to determine constructional detail of the antenna that meets

some desired performance characteristics. A few of the characteristics that define an antenna

performance are SLL, beamwidth, bandwidth, F/B ratio, size, gain, and input impedance.

Qt Creator is used as to create BBO algorithms in C++, whereas NEC2 is used to evaluate

all antenna designs for gain, impedance, etc.

5.2 Implementation Requirements

To design Yagi-Uda antenna and to test Optimization techniques on benchmark functions we

require a programming platform of Qt Creator for C++ programming and NEC2 to evaluate
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antenna design based on method of moments. Their brief introduction is present in following

subsections :

5.2.1 Qt Creator

Qt Creator is a cross-platform integrated development environment tailored to the needs of

Qt developers. It provides:

1. C++ and JavaScript code editor

2. Integrated UI designer

3. Project and build management tools

4. gdb and CDB debuggers

5. Support for version control

6. Simulator for mobile UIs

7. Support for desktop and mobile targets

Qt Creator is part of Qt Quick, which allows designers and developers to create the kind of

intuitive, modern-looking, fluid user interfaces that are increasingly used on mobile phones,

media players, set-top boxes and other portable devices. Qt Creator enables collaboration

between designers and developers. Designers work in a visual environment, while developers

work in a full featured IDE and Qt Creator supports round-trip iteration from design to

code, test and back to design.

5.2.2 C++ Development with Qt

Qt provides an intuitive C++ class library with a rich set of application build blocks for

C++ development. Qt goes beyond C++ in the areas of inter-object communication and

flexibility for advanced GUI development. Qt adds the following features to C++:

1. Powerful mechanism for inter-object communication called signals and slots.

2. Queryable and designable object properties.

3. Powerful events and events filters.

4. Contextual string translation for internationalization.
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5. Sophisticated interval driven timers that make it possible to elegantly integrate many

tasks in an event-driven GUI.

6. Hierarchical and queryable object trees that organize object ownership in a natural

way.

7. Guarded pointers that are automatically set to 0 when the referenced object is de-

stroyed, unlike normal C++ pointers which become dangling pointers when their ob-

jects are destroyed.

8. A dynamic cast that works across library boundaries.

5.2.3 Numerical Electromagnetics Code (NEC)

The old version of Numerical Electromagnetics code, i.e., NEC-2 is a computer code that

runs through command line for analyzing the electromagnetic response of an arbitrary struc-

ture consisting of wires and surfaces in free space or over a ground plane. The analysis is

accomplished by the numerical solution of integral equations for induced currents. The ex-

citation may be an incident plane wave or a voltage source on a wire, while the output may

include current and charge density, electric or magnetic field in the vicinity of the structure,

and radiated fields.

The Numerical Electromagnetics Code (NEC-2) is a user-oriented computer code for analysis

of the electromagnetic response of antennas and other metal structures. It is built around the

numerical solution of integral equations for the currents induced on the structure by sources

or incident fields. This approach avoids many of the simplifying assumptions required by

other solution methods and provides a highly accurate and versatile tool for electromagnetic

analysis.

5.2.4 How to use NEC

First of all, create a text file with .nec extension and write commands with parameters

to create geometry and radiation pattern of antenna. Commands to create geometry and

radiation pattern of antenna are as follow :

1. Comment Cards (CM, CE): The data-card deck for a run must begin with one or

more comment cards which can contain a brief description and structure parameters

for the run. The cards are printed at the beginning of the output of the run for

identification only and have no effect on the computation. Any alphabetic and numeric

characters can be punched on these cards.
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CM EXAMPLE 

CM YAGI-UDA ANTENNA 

CE Generated by Shelja Tayal 

GW   1   7  -0.2389   0.0000   0.0000   0.2389   0.0000   0.0000   0.0034 

GW   2   7  -0.2462   0.1942   0.0000   0.2462   0.1942   0.0000   0.0034 

GW   3   7  -0.2196   0.4454   0.0000   0.2196   0.4454   0.0000   0.0034 

GW   4   7  -0.2002   0.7596   0.0000   0.2002   0.7596   0.0000   0.0034 

GW   5   7  -0.2083   1.2371   0.0000   0.2083   1.2371   0.0000   0.0034 

GW   6   7  -0.2108   1.5546   0.0000   0.2108   1.5546   0.0000   0.0034 

GE    

GN   -1 

EX   0   2   4   0   1.0000   0.0000 

FR   0   1   0   0  300.0000   0.0000 

RP   0  73  37 1110   0.0000   0.0000   5.0000   5.0000 

EN 

Figure 5.1: Input NEC File Format

2. Wire Specification (GW): It is used to a string of segments to represent a straight

wire.

3. End of Run (EN): It is used to indicate to the program the end of all execution.

4. Excitation (EX): It is used to specify the excitation for the structure. The excitation

can be voltage sources on the structure, an elementary current source, or a plane wave

incident on the structure.

5. Frequency (FR): specify the frequency (frequencies) in Mega Hertz (MHZ).

6. Ground Parameters (GN): It is used to specify the relative dielectric constant

and conductivity of ground in the vicinity of the antenna. In addition, a second set

of ground parameters for a second medium can be specified, or a radial wire ground

screen can be modeled using a reflection coefficient approximation.

7. Radiation Pattern (RP): It is used to specify radiation pattern sampling parameters

and to cause program execution. Options for a field computation include a radial wire

ground screen, a cliff, or surface-wave fields.

These all commands write into a text file in particular defined format and create text file

with .nec extension, as depicted in Fig. 5.1.

After create a text file, it passes through the NEC2.exe as a input file. Then it create a

output text file with .OUT extension contains all characteristics of antenna like frequency,

wavelength, input impedance, gain and run time.
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5.3 Implementation Algorithm

Design of Yagi-Uda antenna is done in four algorithms, first is Fitness Algorithm to design

an antenna without any optimization technique then BBO, PSO and Combined PSO-BBO

algorithm for optimized design of Yagi-Uda antenna.

5.3.1 Fitness Algorithm of Yagi-Uda Antenna

Followings are to step for fitness evaluation in NEC and C++ programming environment.

1. In first step, create a input text file with .nec extension.

2. In second step, add all commands and parameters to design particular antenna with

specific parameters.

3. If file is created, then input file with .nec extension pass to nec2.exe, otherwise create

correct input file as shown in fitness algorithm flow chart Fig 5.2 .

4. In next step, output text file is generated with .out extension.

5. Read all characteristics of an antenna that is required for optimization.

5.3.2 BBO Algorithm

Algorithmic flow for BBO is depicted in Fig. 5.3, and explained stepwise as follows:

1. In first step, identify SIVs and their universe of discourse (UODs).

2. In next step, create a habitat (string).

3. Then generate a random population.

4. Check for maximum iteration number arrived or not. If yes, select the best habitat

and stop the BBO algorithm. If no, then evaluate fitness.

5. Check for fitness if achieved then select the best habitat and stop the BBO algorithm.

If no, then apply migration.

6. After Migration, apply mutation.

7. If fitness is achieved then select the best habitat and stop the BBO algorithm. If no,

then repeat the processes as shown in Fig 5.3.
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Figure 5.2: Fitness Evaluation Algorithm Flow Chart

5.3.3 PSO Algorithm

Algorithmic flow for PSO described below step wise and depicted in Fig. 5.4 for design

optimization of Yagi-Uda antenna.

1. Initialize the population of particles at random positions and velocities. Assign present

location and fitness as pid and pbest to every particle as starting position and fitness,

respectively.

2. For each particle, evaluate its fitness at the present position, xi.

3. Compare the particle’s fitness with pbest. If the current fitness value is better, copy it

to pbest and set pid equal to the current position, xid.

4. Identify the most successful particle in the swarm and store it as pgd.
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Figure 5.3: BBO Algorithm Flow Chart

5. Update the velocity and position of the particle using equations (5.1) and (5.2) [Shi

and Eberhart, 1999]:

vm+1
id = χ(wvmid + ψ1r1(p

m
id − xmid) + ψ2r2(p

m
gd − xmid)) (5.1)

xm+1
id = xmid + vm+1

id (5.2)

Here, w is inertia weight, ψ1 is cognitive parameter, ψ2 is social parameter and constric-

tion factor χ are strategy parameters of PSO algorithm, while r1, r2 are random numbers

uniformly distributed in the range [0,1].
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Figure 5.4: PSO Algorithm Flow Chart

5.3.4 Combined PSO-BBO Algorithm

To investigate faster convergence and evolve best results, PSO and BBO are experimented

together to optimize same problem of antenna design. Here, PSO is made to run for initial

pre-specified number of iterations and then BBO runs till end, however, number of maximum

iterations is kept same. Algorithmic flow is depicted in Fig. 5.5 for design optimization of

Yagi-Uda antenna.

1. In first step, identify SIVs and their universe of discourse (UODs). Here SIV’s are

[L1, L2, . . . , LN , S1, S2, . . . , SN−1], where L is the length of N element yagi-uda antenna

and S is the spacing between them.

2. Create habitats and initialize the random population of size NP .

3. Evaluate fitness of each habitat.

4. Update the population using PSO and BBO. Then check maximum iteration is done

or not. If yes, select a best habitat and stop the BBO algorithm. If no, then evaluate

fitness.
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Figure 5.5: Combined PSO-BBO Algorithm Flow Chart

5.4 Conclusion

In this chapter, various implementation steps of algorithmic flow of fitness algorithm of

Yagi-Uda antenna with NEC2 software and algorithmic flow of BBO, PSO and combined

PSO-BBO are discussed for better understanding of work on both softwares (Qt Creator and

NEC2). Simulation results of convergence performance of various stochastic algorithms using

benchmark functions and 6-element Yagi-Uda antenna are represented in next chapter.



CHAPTER 6

SIMULATION RESULTS

This chapter presents average simulation results of 10 monte-carlo evolution-

ary runs to conclude convergence performance of various stochastic algorithms.

Many simulation results are discussed in this chapter by using benchmark func-

tions (Ackley, Dejong, Griewank, Rastrigin, Rosenbrock) and Yagi-Uda Antenna.

Here, we use C++ programming platform for coding of various stochastic algo-

rithms and NEC2, antenna modeling software, to determine antenna character-

istics like gain and impedance etc..

6.1 Introduction

BBO is one of stochastic search algorithms therefore, require multiple run to present fair

analysis. To improve the performance of BBO algorithm, various variants of BBO have been

introduced like IRBBO, EBBO, Blended Migration. In this thesis, We introduced some new

algorithms to get the faster results, i.e., the proposed algorithms are GE-BBO, GE-EBBO,

GE-IRBBO. When GE-BBO is integrated with EBBO, it becomes GE-EBBO. When GE-

BBO is integrated with Immigration Refusal then it becomes GE-IRBBO. Here, BBO & its

variants, GE-BBO, GE-EBBO, GE-IRBBO are made to run for 10000 iterations using 20

habitats in each case. These algorithms are also experimented to design Yagi-Uda Antenna

by optimizing gain, impedance etc. BBO and GE-BBO are made to run for 200 iterations

using 20 and 30 habitats in each case. GE-EBBO is applied on Yagi-Uda antenna to optimize

its wire lengths and spacings in between them to present better choice for faster convergence

and made to run for 50 iterations with 30 habitats and their performances are presented in

40
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the ending sections of this chapter. PSO, BBO and Combined PSO-BBO are also made to

run for 200 iterations with 30 habitats in each case. Every habitats involves 11 SIVs for

evolution of six-wire Yagi-Uda antenna.

6.2 Simulation Platform

Six-wire Yagi-Uda antenna designs are optimized for gain using PSO, BBO, GE-BBO and

combined PSO-BBO algorithms are investigated. Average of 10 monte-carlo evolutionary

runs for each algorithm are plotted here for investigation. The C++ programming platform

is used for coding of optimization algorithms, whereas, a method of moments based software

named as NEC [Burke and Poggio, 1981] is used for evaluation of antenna designs. Each

potential solution in BBO is encoded as vector with 11 SIVs as shown in Fig. 4.7. The

universe of discourse for the search of optimum values of wire lengths and wire spacings are

0.40λ − 0.50λ and 0.10λ − 0.45λ, respectively, however, cross sectional radius and segment

sizes are kept same for all elements, i.e., 0.003397λ and 0.1λ respectively, where λ is the

wavelength corresponding to frequency of operation, i.e, 300 MHz. Excitation is applied to

the middle segment of driven element and location of middle segment of the reflector element

is always kept at x = 0.

In this chapter, Firstly, Convergence comparison of various stochastic algorithms like BBO,

IRBBO, EBBO, Blended Migration, GE-BBO, GE-EBBO, GE-IRBBO is done by testing on

various benchmark functions. Secondly, Convergence Performance of gain optimization of six-

element Yagi-Uda Antenna is experimented by BBO, GE-BBO. Thirdly, gain optimization of

six-element Yagi-Uda Antenna is performed by BBO, EBBO, PSO and GE-EBBO. Fourthly,

gain optimization of six-element Yagi-Uda Antenna is performed by PSO, BBO, Combined

PSO-BBO.

6.3 Simulations on Benchmark Testbed

Various stochastic algorithms are tested by using benchmark functions. Stochastic algorithms

are BBO, IRBBO, EBBO, Blended Migration, GE-BBO, GE-EBBO, GE-IRBBO. Conver-

gence performance of various stochastic algorithms is investigated with high mutation on

mediocre habitats, i.e., C = 1. Simulation parameters used here are:

1. Population size: 20

2. Number of SIV’s: 10

3. Search space of f(x): −2 6 x 6 2
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4. Number of Iterations: 10000

5. Mutation probability: 1%

6. Number of Monte-Carlo simulations per experiment: 10

7. No Elitism in Mutation

Benchmark Functions used are Ackley, Dejong, Griewank, Rastrigin, Rosenbrock. In almost

all the cases GE-EBBO gives better results than BBO and its variants. But the Blended

migration gives very poor and exceptional results, i.e., out of the range of graph. Thats why it

is not shown in the graph. The evolutionary simulation results for convergence performance

for each benchmark function are presented, systematically, one by one as follows:

6.3.1 Ackley

In case of ackley function, All stochastic algorithms are tested by using the ackley function

from the Table 4.1. The performance of various algorithms is shown in Fig. 6.1 and is given

in Table 6.1. By using ackley function, The best results are given by GE-EBBO. Rest other

optimization techniques give results closer to the best one. EBBO gives poor results followed

by IRBBO, BBO and Blended Migration.
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Figure 6.1: Convergence Comparison using Ackley Function

Fig. 6.2 shows the convergence comparison between BBO and GE-BBO using ackley function.

Initially, GE-BBO converges faster, After then BBO gives the overall best results. The reason

of bad performance of GE-BBO is the large possibilty of similar solutions. Because of high

exploitation in GE-BBO.
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Figure 6.2: BBO versus GE-BBO using Ackley Function

Fig. 6.3 shows the convergence comparison between EBBO and GE-EBBO using ackley

function. GE-EBBO performs overall best in this case. GE-EBBO performs better because

of high exploitation on less fit habitats, whereas, less exploitation on high fit habitats and

then the modified clear duplicate operator is further integrated to increase the diversity and

exploration of the solution.
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Figure 6.3: EBBO versus GE-EBBO using Ackley Function

Fig. 6.4 shows the convergence comparison between IRBBO and GE-IRBBO using ackley

function. IRBBO performs better in this case, whereas, high exploitation in GE-IRBBO

gives bad results instead of increasing the fitness of habitats.
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Figure 6.4: IRBBO versus GE-IRBBO using Ackley Function

6.3.2 Dejong

In case of dejong function, All stochastic algorithms are tested by using the dejong function

from the Table 4.1. The performance of various algorithms is shown in Fig. 6.5 and is given

in Table 6.1. By using dejong function, The best results are given by GE-EBBO. Rest other

optimization techniques give results closer to the best one.
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Figure 6.5: Convergence Comparison using Dejong Function

Fig. 6.6 shows the convergence comparison between BBO and GE-BBO using dejong function.

BBO performs better in this case. GE-BBO gives bad results because of the large possibility

of similar solutions.

Fig. 6.7 shows the convergence comparison between EBBO and GE-EBBO using dejong

function. GE-EBBO performs better in this case. The possibility of similar solution is

removed in EBBO and GE-EBBO by integrating modified clear duplicate operator.
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Figure 6.6: BBO versus GE-BBO using Dejong Function
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Figure 6.7: EBBO versus GE-EBBO using Dejong Function

Fig. 6.8 shows the convergence comparison between IRBBO and GE-IRBBO using dejong

function. GE-IRBBO performs almost same like IRBBO in this case.

6.3.3 Griewank

In case of griewank function, All stochastic algorithms are tested by using the griewank

function from the Table 4.1. The performance of various Algorithms is shown in Fig. 6.9

and is given in Table 6.1. By using griewank function, GE-EBBO and EBBO gives almost

same results. Initially, EBBO converges faster. But with increase in iterations, GE-EBBO

performs better than all other algorithms.

Fig. 6.10 shows the convergence comparison between BBO and GE-BBO using griewank

function. BBO performs better in this case.
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Figure 6.8: IRBBO versus GE-IRBBO using Dejong Function
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Figure 6.9: Convergence Comparison using Griewank Function
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Figure 6.10: BBO versus GE-BBO using Griewank Function
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Fig. 6.11 shows the convergence comparison between EBBO and GE-EBBO using griewank

function. GE-EBBO performs better in this case.
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Figure 6.11: EBBO versus GE-EBBO using Griewank Function

Fig. 6.12 shows the convergence comparison between IRBBO and GE-IRBBO using griewank

function. IRBBO performs better in this case.
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Figure 6.12: IRBBO versus GE-IRBBO using Griewank Function

6.3.4 Rastrigin

In case of rastrigin function, All stochastic algorithms are tested by using the rastrigin

function from the Table 4.1. The performance of various Algorithms is shown in Fig. 6.13

and is given in Table 6.1. By using Rastrigin Function, The best results are given by GE-

EBBO. initially, GE-EBBO converges slowly than other algorithms. But with increase in

number of iterations, GE-EBBO performs better than all other algorithms.
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Figure 6.13: Convergence Comparison using Rastrigin Function

Fig. 6.14 shows the convergence comparison between BBO and GE-BBO using rastrigin

function. BBO performs better in this case.
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Figure 6.14: BBO versus GE-BBO using Rastrigin Function

Fig. 6.15 shows the convergence comparison between EBBO and GE-EBBO using rastrigin

function. GE-EBBO performs better in this case.

Fig. 6.16 shows the convergence comparison between IRBBO and GE-IRBBO using rastrigin

function. IRBBO performs better in this case.
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Figure 6.15: EBBO versus GE-EBBO using Rastrigin Function
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Figure 6.16: IRBBO versus GE-IRBBO using Rastrigin Function

6.3.5 Rosenbrock

In case of rosenbrock function, All stochastic algorithms are tested by using the rosenbrock

function from the Table 4.1. The performance of various algorithms is shown in Fig. 6.17

and is given in Table 6.1. By using this function, The best results are given by IRBBO. At

initial stage GE-EBBO does not perform upto the mark, but with increase in iterations at

3000-4000, the performance increases and approaches almost to the performance of IRBBO

which gives best results.

Fig. 6.18 shows the convergence comparison between BBO and GE-BBO using rosenbrock

function. BBO performs better in this case.

Fig. 6.19 shows the convergence comparison between EBBO and GE-EBBO using rosenbrock

function. Performance of EBBO and GE-EBBO is almost same.
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Figure 6.17: Convergence Comparison using Rosenbrock Function

 

1000 3000

0 
5000 6000 8000 0 10000 2000 4000 7000 9000 

.1195

55 

5 

3 

4 

6 

7 

8 

9 

10 
               BBO 

         GE-BBO 

       

 

f 
(x

) 

Iterations 

× 10
-5 

Figure 6.18: BBO versus GE-BBO using Rosenbrock Function
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Figure 6.19: EBBO versus GE-EBBO using Rosenbrock Function
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Fig. 6.20 shows the convergence comparison between IRBBO and GE-IRBBO using Rosen-

brock function. IRBBO performs better in this case.
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Figure 6.20: IRBBO versus GE-IRBBO using Rosenbrock Function

Test 

Function 
BBO GE-BBO IRBBO GE-IRBBO EBBO GE-EBBO Blended 

Ackley 0.1149567 0.1152590 0.1139057 0.1149593 0.1135618 0.1135563 0.1211875 

Dejong 0.0256786 0.0257821 0.0254857 0.0255463 0.0252104 0.0251785 0.0286977 

Griewank 0.0370556 0.0371213 0.0370368 0.0370861 0.0370287 0.0370322 0.0371918 

Rastrigin 0.0046668 0.0046874 0.0046538 0.0046580 0.0045540 0.0045334 0.0052622 

Rosenbrock 0.0000325 0.0000404 0.0000313 0.0000355 0.0000316 0.0000314 0.0000414 

Average 0.0364780 0.0365779 0.0362226 0.0364569 0.0360773 0.0360663 0.0384761 

 

Table 6.1: Comparison of various Stochastic Algorithms Convergence Performance using
Benchmark Testbed

6.4 Simulation results using six-element Yagi-Uda Antenna

The evolutionary simulation results for convergence performance are presented, systemati-

cally, one by one as follows:

6.4.1 BBO versus GE-BBO

In case of BBO, standard migration is experimented for the gain optimization of six-wire

Yagi-Uda Antenna. In case of GE-BBO, the good solution features contribute more towards
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the worse solution features to make them more fit and to make the convergence faster.

GE-BBO is also experimented for the gain optimization of Yagi-Uda Antenna. Convergence

performance of BBO and GE-BBO algorithms is investigated with high mutation on mediocre

habitats, i.e., C = 3. Simulation parameters used here are:

1. Population size: 20 and 30

2. Number of SIV’s: 11

3. UOD for wire length elements: 0.40λ− 0.50λ

4. UOD for wire length spacings: 0.10λ− 0.45λ

5. cross sectional radius: 0.003397λ

6. cross sectional segment size: 0.1λ

7. Mutation probability: 1%

8. Number of Iterations: 200

9. Number of Monte-Carlo simulations per experiment: 10

10. Elitism in Mutation

Experiments are done on both by using 20 habitats and 30 habitats. In both the cases as

shown in the Fig. 6.21, 6.22 the convergence is faster in case of GE-BBO. In case of 20 habitat,

The performance of GE-BBO is overall better than BBO, whereas, in case of 30 habitats, the

convergence performance of GE-BBO is almost as BBO. The best gain optimization results

obtained are given in the Tables 6.2, 6.3.

 GE-BBO BBO 

Element Length Spacing Length Spacing 

1(λ) 0.4851 - 0.4849 - 

2(λ) 0.4955 0.1629 0.4625 0.1657 

3(λ) 0.4380 0.2684 0.4408 0.2473 

4(λ) 0.4249 0.3820 0.4256 0.3877 

5(λ) 0.4181 0.4384 0.4200 0.4190 

6(λ) 0.4295 0.3616 0.4272 0.3876 

Gain(dBi) 13.84 13.85 

Z(Ω) 5.37+j67.9 3.55+j15.48 

Table 6.2: Convergence comparison of GE-BBO versus BBO using 20 habitat on six-
element Yagi-Uda Antenna
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Figure 6.21: BBO versus GE-BBO using 20 habitats
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Figure 6.22: BBO versus GE-BBO using 30 habitats

 GE-BBO BBO 

Element Length Spacing Length Spacing 

1(λ) 0.4852 - 0.4841 - 

2(λ) 0.4847 0.1808 0.4731 0.1745 

3(λ) 0.4431 0.2256 0.4391 0.2561 

4(λ) 0.4225 0.4181 0.4247 0.3986 

5(λ) 0.4205 0.4071 0.4201 0.4060 

6(λ) 0.4288 0.3769 0.4292 0.3786 

Gain(dBi) 13.84 13.84 

Z(Ω) 4.32+j48.54 4.81+j34.24 

Table 6.3: Convergence comparison of GE-BBO versus BBO using 30 habitat on six-
element Yagi-Uda Antenna
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6.4.2 BBO, EBBO, PSO and GE-EBBO

In case of BBO, standard migration is experimented for the gain optimization of six-wire

Yagi-Uda antenna. In case of EBBO, clear duplicate operator is used to increase the diversity

over similarity in the population and to increase the exploration ability. GE-EBBO is based

upon grading the potential habitats for migration and the concept of EBBO is incorporated

to prevent similar solutions and to increase the diversity of newly generated solutions. The

proposed algorithm GE-EBBO is applied on a six-element Yagi-Uda antenna to optimize its

wire lengths and spacings in between them to present the better choice for faster convergence.

Convergence performance of BBO, EBBO and GE-EBBO algorithms is investigated with high

mutation on mediocre habitats, i.e., C=1. Simulation parameters used here are:
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Figure 6.23: Convergence Performance of BBO, EBBO, PSO and GE-EBBO

1. Population size: 30

2. Number of SIV’s: 11

3. UOD for wire length elements: 0.40λ− 0.50λ

4. UOD for wire length spacings: 0.10λ− 0.45λ

5. cross sectional radius: 0.003397λ

6. cross sectional segment size: 0.1λ

7. Mutation probability: 1%

8. Number of Iterations: 50

9. Number of Monte-Carlo simulations per experiment: 10

10. Elitism in Mutation
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Experiments are done on 30 habitats. Fig. 6.23 depicts the convergence performance of BBO,

EBBO, PSO and GE-EBBO algorithms. It can be observed that GE-EBBO is performing

best among all optimization algorithms. EBBO also converges faster than BBO, but almost

same like PSO’s performance. The best gain optimization results are shown in the Table 6.4.

Stochastic 
algorithms 

Element 1(λ) 2(λ) 3(λ) 4(λ) 5(λ) 6(λ) Gain(dBi) Z(Ω) 

BBO Length 0.4875 0.4884 0.4400 0.4233 0.4217 0.4233 13.84 4.09+j54.53 
Spacing - 0.1503 0.2571 0.4087 0.3932 0.4095 

EBBO Length 0.4827 0.4735 0.4424 0.4259 0.4201 0.4256 13.83 5.23+j31.59 
Spacing - 0.2255 0.2160 0.3889 0.4181 0.3911 

GE-EBBO Length 0.4842 0.4910 0.4425 0.4253 0.4181 0.4270 13.84 4.47+j59.63 
Spacing - 0.1778 0.2381 0.3918 0.4212 0.3870 

PSO Length 0.4872 0.4944 0.4423 0.4272 0.4194 0.4276 13.85 3.83+j62.16 
spacing - 0.1597 0.2420 0.3857 0.4190 0.3841 

Table 6.4: The Best Results obtained using Gain Optimization by BBO, EBBO and GE-
EBBO

6.4.3 PSO, BBO and Combined PSO-BBO

In case of BBO, standard migration, PSO, Combined PSO-BBO is experimented for the gain

optimization of Yagi-Uda Antenna. To investigate faster convergence and evolve best results,

PSO and BBO are experimented together to optimize same problem of antenna design. Here,

PSO is made to run for initial pre-specified number of iterations and then BBO runs till end,

however, number of maximum iterations is kept same, i.e., 200. Convergence performance

of BBO, PSO and Combined PSO-BBO algorithms is investigated with high mutation on

mediocre habitats, i.e., C = 3. Simulation parameters used here are:

1. Population size: 30

2. Number of SIV’s: 11

3. UOD for wire length elements: 0.40λ− 0.50λ

4. UOD for wire length spacings: 0.10λ− 0.45λ

5. cross sectional radius: 0.003397λ

6. cross sectional segment size: 0.1λ

7. Mutation probability: 1%

8. Number of Iterations: 200

9. Number of Monte-Carlo simulations per experiment: 10

10. Elitism in Mutation
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Figure 6.24: Convergence Performance of PSO and BBO

 PSO BBO PSO-BBO 

Element Length Spacing Length Spacing Length Spacing 

1(λ) 0.4861 - 0.4838 - 0.4869 - 

2(λ) 0.4791 0.1650 0.4728 0.1745 0.4941 0.1597 

3(λ) 0.4426 0.2337 0.4388 0.2561 0.4421 0.2420 

4(λ) 0.4239 0.4009 0.4244 0.3986 0.4269 0.3857 

5(λ) 0.4203 0.4097 0.4198 0.4060 0.4191 0.4190 

6(λ) 0.4252 0.3918 0.4289 0.3786 0.4273 0.3841 

Gain(dBi) 13.85 13.84 13.85 

Z(Ω) 3.58+j31.86 4.82+j34.24 3.83+j62.17 

Table 6.5: The Best Results obtained using Gain Optimization by PSO and BBO

Fig. 6.24 depicts the convergence performance of PSO, BBO and combined PSO-BBO algo-

rithms. It can be observed that BBO is performing best among all optimization algorithms.

Further, PSO gives poor evolutionary results that are improved suddenly as and when BBO

iterations start during combined PSO-BBO flow. The best gain optimization results are

shown in the Table 6.5.

6.5 Conclusion

In this chapter, BBO & its variants are experimented and discussed with their graded versions

by applying on various evaluation platforms to improve the performance of BBO algorithms.

In the ending of section average results and best results are tabulated for overall evolution.



CHAPTER 7

CONCLUSION AND FUTURE

SCOPE

Research is an iterative process very similar to BBO where researchers keep test-

ing ideas based on their previous successes and the successes observed by other

researchers in the area. The work in this thesis is no exception. Various research

observations are presented at the end of each chapter as conclusions but limited

to the scope of that chapter only. This chapter aims to conclude the thesis, as a

whole, and to aggregate all the offshoots found throughout the work.

7.1 Introduction

The highlights of this thesis are:

1. We explore and test proposed algorithms on testbed of benchmark functions and com-

pared them with various stochastic algorithms.

2. We explore GE-BBO and BBO to optimize gain of six-element Yagi-Uda antenna as

single objective problem by varying element lengths and spacings between among ele-

ments.

3. We investigate GE-EBBO, BBO, EBBO and PSO for better convergence performance

for design optimization of six-element Yagi-Uda antenna.

57
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4. We investigate BBO, PSO and combined PSO-BBO for faster convergence performance

as this technique is used for design optimization of six-element Yagi-Uda antenna.

Section 7.1 presents the concluding remarks about what has been investigated, developed,

and contribution througout the work. In Section 7.3, various offshoots of the work are

discussed as future research agenda.

7.2 Conclusion

In this thesis, various stochastic algorithms are investigated. Firstly on benchmark functions

then on Yagi-Uda antenna for better convergence and gain optimization. Conclusions of this

investigational study, as a whole are discussed as follows:
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Figure 7.1: Best Convergence Performance using different Stochastic Algorithms

1. Among all the proposed algorithms, it can be observed that GE-EBBO performs best

on almost all the benchmark functions. Because of high exploitation during migration,

there is a large possibility of similar solutions, the concept of modified clear duplicate

operator is incorporated in GE-EBBO to increase the diversity of newly generated

solutions. Thats why GE-EBBO performs better.

2. From Yagi-Uda antenna simulation results, it can be observed that GE-BBO with C=3

on 20 and 30 habitats, GE-EBBO with C=1 on 30 habitats and BBO with C=3 on 30

habitats gives the best convergence performance by comparing with various stochastic

algorithms as depicted in Fig. 7.1.

3. Maximum gain of Yagi-Uda antenna acheived during optimization using various stochas-

tic algorithms is 13.85 dB that is better than that of reported in [Singh et al., 2010],

i.e., 13.84 dB.
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7.3 Future Agenda

Most of the times, a solution to a problem gives many issues to be investigated. The following

remains on our future agenda.

1. In this thesis, We target single objective as gain of Yagi-Uda antenna using proposed

algorithms. Here, Multiobjective optimization algorithms can be targeted for Gain,

Impedance, etc.

2. All these stochastic algorithms can also be investigated to design other types of antenna

like helical antenna, spida antenna, microstrip antenna, etc.

3. Investigations of some another real time problem using GE-EBBO can also be targeted.

4. Proposed graded algorithm can also be investigated by influencing the population size

and search space to get better results.

5. Investigations of some problem using variant of PSO and comparing the performance

with proposed algorithms can also be targeted.
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